
22 •  September 2024  •  PMPA Section .........................................................................................................................................................................................

No131131

FANUC Macro Programming Basics
By David Wynn, Director of Technical Services, PMPA

Watch 
Dave & Davey video

Macros are an essential part of high-production CNC 
programing because they allow for blocks of code to be 
simpli� ed. � ey also allow programs to easily be used on 
families of parts. Macros can even make code more accurate 
and precise.

Like writing a function in traditional programming, using 
macro variables in G code can allow a programmer to create 
repeatable blocks of code that are proven. A macro is a 
container that holds a value. Using macros changes what the 
code does but not the underlying process. A programmer 
must only � gure out the details once then let the controller 
process the math involved in producing the tool path. Let’s 
look at the basic structure of FANUC macros.

Null means no value.  It does not mean zero. � ink of 

a variable as a container.  When it is null, that means the 
container is empty. 

Some of these ranges vary by controller. Some 
manufacturers change the address system to match how 
they utilize the control. � is may limit the range of addresses 
available or change their behavior.  

For example: Some controllers change the value of #1-33 
values to null after the program has executed. � e values 
for #100-199 are local to the program or channel in use but 
are persistent until power o� . In practice #100 in Channel 1 
and #100 in Channel 2 can have di� erent values. In practice, 
#100 in Channel 1 and #100 in Channel 2 can have di� erent 
values. (Check your controller’s manual to see exactly how 

your machine works.) I call this “executional persistency.” 
� ey persist in memory through multiple loops of a program 
but are volatile because they are reset to null at power 
o� . � e values of #500-999 are the same value across the 
control. Putting a #500=1 allows that value to be called by 
multiple channels and subprograms and receive the value of 
“1”. � is is powerful because values can be shared between 
subprograms and changed, then pass the new value back to 
the original program.  

� e WHILE loop in the example acts as a subprogram and 
runs through this code until the condition is met, simplifying 
the code process. Since the code for each � at is combined 
in this block, a 
change a� ects all 
� ats equally. A 
programmer does 
not have to go 
through the code 
and � nd all six 
places and change 
it manually. � is 
program is utilizing 
a #100 variable local 
to this channel and 
program. 

Macros are a 
powerful way 
to level up a 
CNC program. 
Using advanced 
programming 
techniques allows programmers to simplify complex tasks. 
Once a block of code is designed, it can be utilized on 
multiple programs. Code reusability is key to accurate and 
precise programming. Humans make mistakes but when 
we use proven systems (reusable code for example), we 
increase our ability to perform. 

EXAMPLE:
Macros In Use (Milling hex � ats)
#100=0
#101=.250 (Size of Hex)
WHILE [#100 LT 360] DO1
G0Y.888Z.3125
X#101
M18C#100
G1Y-.888F7.638
#100=#100+ 60
M18C#100
G1Y.888
#100=#100+ 60
END1
G0X.6
M60M5
G99

Range Type Persistency*

#1 - #33 Local Variable Non-Persistent

#100 - #199 Common Variables Non-Persistent

#500 - #999 Common Variables Persistent

#1000 and up System Variables Persistent
* Persistent variables the value remains a� er the controller is powered o� .  

In a non-persistent variable, the value is lost when the controller is powered o� .


