In the old days, everybody knew that it was cycle time that won you the job over the other shops…

Everybody knows it's cycle time...

Cycle time is a major determinant of price per piece, but it may no longer be the main one. (I’m going to ignore the effect of setup time and order quantity in this discussion. These can also be a major influence in price per piece on smaller lot sizes.)

Here are 7 other determinants of piece cost:

Cleanliness– some parts require millipore tests to assure cleanliness on parts for sophisticated systems. Costs to obain this level of cleanliness can exceed the cost to whittle the part out of the barstock.

Surface finish– what the machine can deliver may be acceptable, but when the customer demands to see CPK for surface finish,  now you are talking about a secondary operation for grinding, honing or other surface finishing process- at an additional cost.

Certifications and paperwork– No I’m not talking about mill certs for raw material, I’m talking about customer required documentation that requires outside labwork, analysis, testing or validation.  In specialty areas like aviation, medical, and automotive, the cost to prepare paperwork submissions (especially first piece submissions) easily exceeds the value of the parts provided. Making aircaft parts? Something on the U.S. Munitions List? You know what I’m talking about.

Post process steps– Plating or heat treating costs can exceed the cost of the basic part depending on the process and application. Transportation to outside vendors also adds to this, as would the compliance costs if the shop is capable of doing these processes on site.

Packaging– In a day when supply chains span the globe, multiple time zones, and climate regions- where our metal products may be exposed to salt air on board ship or depressurized air cargo holds at 35,000 feet- packaging to preserve product integrity can be a cost driver. Especially if to Mil-spec and or the requirement mandates the  need to preserve integrity for a period of years.

Tolerances and capability– I have seen parts where a new engineer has decreased the tolerance so much  that the product can no longer be made on the economical machines that exceeded requirements for the past five years. Requiring Cpk that exceed normal manufacturing expectations “just for safety’s sake” can also result in moving a part off a multispindle automatic with short cycle times onto  several CNC machines (to maintain volume) just to get that extra “kick” of Cpk. The risk that was eliminated is now reflected in the new cost of the more expensive process.

Raw Materials– on tiny, high stock removal, highly engineered parts, the cost of machining probably does exceed the cost component of the raw material. Show me a part that looks essentially like the piece it was made from, and I’ll show you a part where raw material cost, not cycle time, is the primary cost driver.

Transportation, including premium freight for parts or paperwork, is another item to consider. The point of this post is not to whine about all of these additional requirements- it is to point out that they can be a frictional cost, a parasitic load that increases part costs, and yet are under the control of the Buyer. These costs, either separately or in combination, may be the main drivers of why that 15 second  part now costs so much.

Sales people and estimators- unless you actively review the real needs with your customer, your blind acceptance/compliance to all of these “Additional Requirements” may be the real reason that the customer comes back saying that “Your price is too high.”

I teach my students that critical thinking is recognizing and challenging assumptions. Critical sales and estimating, if they are to be successful, might share that definition of recognizing and challenging those assumptions that add cost, but not value, to our precision machined products.

Stopwatch2

Three primary criteria for selecting bar steels are  1) suitability for end use, 2) suitability for manufacturing process, 3) economical delivery of the requirements.

Shape can be an important selection factor.

Suitability for end use includes appropriate mechanical properties, physical properties and chemical compatibility. Mechanical properties can include hardness, tensile and yield strength, ductility as measured by % elongation or % reduction in area, and / or impact properties. Mechanical properties can be achieved by chemical composition, cold work, or heat treatment. Note: properties need to match the environmental conditions of the intended end use…  Physical properties that are often considered include magnetic properties for solenoid, actuator, or electronic applications. Process path of steelmaking can play an important role in determining these properties.
Suitability for manufacturing requires at least a cursory understanding of the intended process path. Will there be extensive stock removal by machining? Welding, brazing or other means of bonding? Heat treatment? Will the equipment used to machine require tight dimensional tolerances or straightness? Will the material be upset or cold worked? Will the material be cold worked (crimped, swaged, planished or staked) after machining? Bismuth additives can prevent achievement of bond strength in brazed joints unless special techniques and materials are employed. Various chemical constituents can have an effect on the cold work response of steel. These too can be determined by the melting and thermomechinical history of the steel before it arrives at your shop.
Economical delivery of requirements means choosing a materal that permits the creation of conforming parts that fully meet the requirements for end use and manufacturability at a total lowest cost. There are many ways to meet any particular set of requirements for steel in most uses. Chemistry, cold work, heat treatment, as well as design details can all be criteria used to select one material over another. Minimizing costs is clearly important, but most important is assuring that all of the “must have” properties (strength, hardness, surface finish, typically) needed in the finished product are delivered.
Costs of manufacturing can make up a large fraction of the final products cost. For some parts, the cost of manufacturing and processing can exceed the cost of the material. Choosing the lowest cost process path that will assure required properties often requires steel materials that are priced above the cheapest available. This is because free machining additives, or cold finishing processes  can reduce cost to obtain desired properties or product attributes when compared to those needed to get hot rolled product up to the desired levels of performance.
Bottom line: Buyers may want to get the cheapest price per pound of steel purchased; Savvy buyers want to buy the steel that results in the lowest cost per finished part- assuring that costs are minimized for the total cost of production of their product. Understanding the role of steel making and finishing processes can help the buyer optimize their material selection process.
Photo courtesy of PMPA Member Corey Steel.

 
What’s it gonna be? Feed or Speed?




For a given production rate of metal removal, better tool life is obtained by using heavy feed and low speed.
 Sorry, Flash.
Less horsepower per cubic inch of metal removal is required for heavier feeds (see the diagonal lines on the chart below.)

This also means  fewer revolutions of the work (or tool) to get the job done.
This reduces wear on the tool.
Slower speeds results in less friction, less heat.
Surface finish declines as feed rate  increases, but  it is usually acceptable until a critical rate is reached (see  the numbers along the curves above- they are the values for surface finish in RMS).
In steels, grades that are rephosphorized and renitrogenized can take heavier feeds than steels that are not. (That’s why I’m showing C1213 at 0.07-0.012 phosphorous compared to C1215 at 0.04-0.09 Phos.)
Here is another graph to illustrate the effect of feed rate and surface finish.

As feed rate increases bottom (horizontal) axis so does surface roughness (vertical) axis measured in RMS.
The contract shop industry remains seduced by the siren song of speed to reduce cycle time.
Perhaps the proper use of the feed approach can make you some new friends among your customers…

These data are based on HSS tools. Obviously using carbide one needs to have sufficient speed to take advantage of the carbide.
Bottom Line: Increased feed rather than speed can result in longer tool life and less problems than increasing speed and  dealing with the heat that results.
What is your approach? Speed for cycle time? Or feed for  minimizing HP for removal and longer tool life and fewer problems?
Feed or speed? What’s it gonna be?
Photo credits:
The Flash: http://www.ramasscreen.com/wp-content/uploads/2009/07/Flash-Adam-Strange-Aquaman.JPG
The Incredible Hulk: http://keneller.typepad.com/photos/uncategorized/2008/06/14/lou_ferrigno_as_incredible_hulk.jpg
Playstations’ genius image of  Finger of the Hulk beckoning link: http://www.sparehed.com/wp-content/uploads/2007/03/ad-hulk-playstation-2-2006.jpg
Share

The role of Manganese in steel in our precision machining shops.

Manganese ore like this comes from Turkey.

Carbon is a chemical element that is the primary hardening constituent in steel. Manganese is a chemical element that is present in all commercial steels, and contributes substantially to a steel’s strength and hardness, but to a lesser extent than does carbon.

  1. The effectiveness of Manganese in increasing mechanical properties depends on and is proportional to the carbon content of the steel.
  2. Manganese also plays an important role in decreasing the critical cooling rate during hardening. This means that manganese helps to increase the steel’s hardenability. It’s effect on hardenability is greater than that of any of the other commonly used alloying elements.
  3. Manganese is also an active deoxidizer, and is less likely to segregate than other elements.
  4. Manganese improves machinability, by combining with sulfur to form an soft inclusion in the steel that promotes a steady built up edge and a place for the chip to break.
  5. Manganese improves yield  at the steel mill by combining with the sulfur in the steel, minimizing the formation of iron pyrite (iron sulfide) which can cause the steel to crack and tear during high temperature rolling.

Manganese is an important constituent of today’s steels.
Now you know a few reasons why Mn (the abbreviation for Manganese) is the second element shown on the chemical analysis report (right after carbon).
It’s That Important!
Mn Ore Photocredit.
Share

  1. Nitrogen strengthens ferrite.
  2. Nitrogen improves surface finish.
  3. Nitrogen improves production rates.
  4. Nitrogen can contribute to cracking during cold working.

Well 3 out of 4 ain’t bad.

"Three out of four ain't bad"

Nitrogen is a chemical element that can contribute to improved surface finish, especially on side working tools. It does so by strengthening  the chip, resulting in a crisp separation from the workpiece. The bulk hardness of the material increases with increased Nitrogen as well.
Nitrogen is an important factor, especially in free machining steels. Like 1215 and 12L14.
As Nitrogen increases, so does hardness.

Nitrogen is higher in electric furnace melted steels than in steels produced in Basic Oxygen Furnaces.
The down side of higher Nitrogen is that it can result in cracking during cold work- operations such as staking, swaging or crimping.
Nitrogen is “implicitly” specified whenever purchasing chooses a  steel supplier. That supplier’s melt process is a major factor on determining the Nitrogen content that you get in the shop.
For a more complete discussion of the role of Nitrogen and how it can affect your precision machining operations, see our article  in Production Machining here.
Photocredit.
Share

Surface finish issues are especially critical in aerospace and medical applications. Chips recontacting the work and high or unstable Built Up Edge  (BUE) are the usual suspects of poor surface finish on machined parts, regardless of material.   There can be other factors, such as a poorly maintained machine or exhausted metalworking fluids, but these are seldom the case when “the last job on this machine ran just fine.”

Surface finish is critical on precision machined parts.
Surface finish is critical on precision machined parts.

Here are our 5 tips  that you can address on the machine to make poor surface finish go away:
1) Increase the speed SFM (especially on Carbide!). This will help reduce BUE.
2) Reduce the feed per revolution (IPR- inch per revolution). This will help reduce the flank wear.
3) Increase the top rake angle.
4) Add a chip breaker / chip curler.
5) Increase tool nose radius.
We have seen increasing speed to be especially helpful on aerospace and medical machining jobs on stainless steel. Increasing speed is also important when using carbide- carbide likes speed.
If you can see that the chip is recontacting the workpiece,  then address your chip control issues first. Chip control  is the first place to start. Adding  chip control geometry on the tool is  probably the easiest change on non CNC machines.  Modifying the cam to break the chip should also be considered.   On  CNC’s, adding chip breaks into the program is also an easy adjustment. These are especially effective if the workpiece is a gummy material.
Built Up Edge (BUE) is impacted by three primary factors: material chemistry (which you can’t change- you already have the material);  surface footage (slower speed means hot chip is in contact with tool longer, creating higher BUE); and tool geometry (the point is to slice or cut, not rub off the material).
Of course, you should make sure that your setup is rigid, your tooling properly seated, your coolant lines  are delivering plenty of coolant  to the tool/work interface, etc., etc.. But these 5 tips are ‘Tools You Can Use’ to improve the surface finish on your problem jobs, including stainless and other aerospace and medical materials.
Share