The machinability of steel bars is determined by three primary factors. Those factors are 1) Cold Work; 2) Thermal Treatment; 3) Chemical Composition.
Cold Work improves the machinability of low carbon steels by reducing the high ductility of the hot rolled product. Cold working the steel by die drawing or cold rolling results in chips that are harder, more brittle, and curled, prodcuing less built up edge on the tools cutting edge.. The improved Yield to Tensile Strength ratio means that your tools and machines have less work to do to get the chip to separate. Steels between 0.15- 0.30 wt% carbon are best machining; above 0.30 wt% the machinability decreases as carbon content (and hardness) increase.
Thermal Treatment improves the machinability of steel by reducing stresses, controlling microstructure, and lowering hardness and strength. While this is usually employed in higher carbon steels, sometimes a Spheroidize Anneal is employed in very low carbon steels to improve their formability. Stress Relief Anneal, Lamellar Pearlitic Anneal, and Spheroidize Anneals are the treatments applied to improve machinability in bar steels for machining.
Chemical composition is a major factor that contributes to the steel’s machinability or lack thereof. There are a number of chemical factors that promote machinability including
Carbon- low carbon steels are too ductile, resulting in gummy chips and the build up of workpiece material on the tool edge (BUE). Between 0.15 and 0.30 wt% carbon machinability is at its best; machinability decreases as carbon content increases beyond 0.30.
Additives that promote machining include
- Sulfur combines with Manganese to form Manganese Sulfides which help the chip to break and improve surface finish.
- Lead is added to steel to reduce friction during cutting by providing an internal lubricant. Lead does not alter the mechanical properties of the steel.
- Phosphorus increases the strength of the softer ferrite phase in the steel, resulting in a harder and stronger chip (less ductile) promoting breakage and improved finishes.
- Nitrogen can promote a brittle chip as well, making it especially beneificial to internal machining operations like drilling and tapping which constrain the chip’s movement.
- (Nitrogen also can make the steel unsuitable for subnsequent cold working operations like thread rolling, crimping, swaging or staking.)
Additives that can have a detrimental effect on machining include deoxidizers and grain refiners.
Deoxidizing and grain refining elements include
- Silicon,
- Aluminum,
- Vanadium
- Niobium
These elements reduce machinability by promoting a finer grain structure and increasing the edge breakdown on the tool by abrasion.
Alloying elements can be said to inhibit machinability by their contribution to microstructure and properties, but this is of small impact compared to the factors listed above.