Three primary criteria for selecting bar steels are 1) suitability for end use, 2) suitability for manufacturing process, 3) economical delivery of the requirements.
Suitability for end use includes appropriate mechanical properties, physical properties and chemical compatibility. Mechanical properties can include hardness, tensile and yield strength, ductility as measured by % elongation or % reduction in area, and / or impact properties. Mechanical properties can be achieved by chemical composition, cold work, or heat treatment. Note: properties need to match the environmental conditions of the intended end use… Physical properties that are often considered include magnetic properties for solenoid, actuator, or electronic applications. Process path of steelmaking can play an important role in determining these properties.
Suitability for manufacturing requires at least a cursory understanding of the intended process path. Will there be extensive stock removal by machining? Welding, brazing or other means of bonding? Heat treatment? Will the equipment used to machine require tight dimensional tolerances or straightness? Will the material be upset or cold worked? Will the material be cold worked (crimped, swaged, planished or staked) after machining? Bismuth additives can prevent achievement of bond strength in brazed joints unless special techniques and materials are employed. Various chemical constituents can have an effect on the cold work response of steel. These too can be determined by the melting and thermomechinical history of the steel before it arrives at your shop.
Economical delivery of requirements means choosing a materal that permits the creation of conforming parts that fully meet the requirements for end use and manufacturability at a total lowest cost. There are many ways to meet any particular set of requirements for steel in most uses. Chemistry, cold work, heat treatment, as well as design details can all be criteria used to select one material over another. Minimizing costs is clearly important, but most important is assuring that all of the “must have” properties (strength, hardness, surface finish, typically) needed in the finished product are delivered.
Costs of manufacturing can make up a large fraction of the final products cost. For some parts, the cost of manufacturing and processing can exceed the cost of the material. Choosing the lowest cost process path that will assure required properties often requires steel materials that are priced above the cheapest available. This is because free machining additives, or cold finishing processes can reduce cost to obtain desired properties or product attributes when compared to those needed to get hot rolled product up to the desired levels of performance.
Bottom line: Buyers may want to get the cheapest price per pound of steel purchased; Savvy buyers want to buy the steel that results in the lowest cost per finished part- assuring that costs are minimized for the total cost of production of their product. Understanding the role of steel making and finishing processes can help the buyer optimize their material selection process.
Photo courtesy of PMPA Member Corey Steel.
Tag: Cheapest Price Per Part Versus Lowest Cost Per Finished Part